[ACM_POJ_2081]动态规划入门练习(三)Recaman's Sequence
杰拉斯 | 时间:2012-04-03, Tue | 6,073 views编程算法
Recaman's Sequence
Time Limit: 3000MS Memory Limit: 60000K
Total Submissions: 17939 Accepted: 7450
Description
The Recaman's sequence is defined by a0 = 0 ; for m > 0, am = am−1 − m if the rsulting am is positive and not already in the sequence, otherwise am = am−1 + m.
The first few numbers in the Recaman's Sequence is 0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9 ...
Given k, your task is to calculate ak.
Input
The input consists of several test cases. Each line of the input contains an integer k where 0 <= k <= 500000.
The last line contains an integer −1, which should not be processed.
Output
For each k given in the input, print one line containing ak to the output.
Sample Input
7 10000 -1
Sample Output
20 18658
Source
比较值得注意的是数组中已存在的数不再放入数组中,而数组很大(0 <= k <= 500000),因此定义另一个数组来储存该数是否已存在,以此避免查找,减少运行时间。
#include<stdio.h> int f[500001]; bool b[10000000] = {1, 0}; //一个足够大的数组来储存是否已存在 int main(){ f[0] = 0; for(int i = 1; i < 500001; ++i){ int n = f[i - 1] - i; if(n < 0 || b[n]){ n = f[i - 1] + i; } b[n] = 1; f[i] = n; } int m; while(scanf("%d", &m) && (m + 1)){ printf("%d\n", f[m]); } return 0; }
又是一次通过,稍稍得瑟一下,然后,晚安。 [微笑]
如需转载请注明出处:杰拉斯的博客
当前暂无评论 »